Metamath Proof Explorer


Theorem grpon0

Description: The base set of a group is not empty. (Contributed by Szymon Jaroszewicz, 3-Apr-2007) (New usage is discouraged.)

Ref Expression
Hypothesis grpfo.1 X=ranG
Assertion grpon0 GGrpOpX

Proof

Step Hyp Ref Expression
1 grpfo.1 X=ranG
2 1 grpolidinv GGrpOpuXxXuGx=xyXyGx=u
3 rexn0 uXxXuGx=xyXyGx=uX
4 2 3 syl GGrpOpX