Metamath Proof Explorer


Theorem gsumsn

Description: Group sum of a singleton. (Contributed by Mario Carneiro, 19-Dec-2014) (Revised by Mario Carneiro, 24-Apr-2016) (Proof shortened by AV, 11-Dec-2019)

Ref Expression
Hypotheses gsumsn.b B=BaseG
gsumsn.s k=MA=C
Assertion gsumsn GMndMVCBGkMA=C

Proof

Step Hyp Ref Expression
1 gsumsn.b B=BaseG
2 gsumsn.s k=MA=C
3 nfcv _kC
4 3 1 2 gsumsnf GMndMVCBGkMA=C