Database BASIC ALGEBRAIC STRUCTURES Groups Abelian groups Group sum operation gsumsnf  
				
		 
		
			
		 
		Description:   Group sum of a singleton, using bound-variable hypotheses instead of
       distinct variable conditions.  (Contributed by Mario Carneiro , 19-Dec-2014)   (Revised by Thierry Arnoux , 28-Mar-2018)   (Proof
       shortened by AV , 11-Dec-2019) 
		
			
				
					Ref 
					Expression 
				 
					
						Hypotheses 
						gsumsnf.c   ⊢    Ⅎ   _  k  C       
					 
					
						gsumsnf.b   ⊢   B  =  Base  G      
					 
					
						gsumsnf.s    ⊢   k  =  M    →   A  =  C         
					 
				
					Assertion 
					gsumsnf    ⊢    G  ∈  Mnd    ∧   M  ∈  V    ∧   C  ∈  B     →   ∑  G  k  ∈   M     A =  C         
				 
			
		 
		
				Proof 
				
					
						Step 
						Hyp 
						Ref 
						Expression 
					 
						
							1 
								
							 
							gsumsnf.c  ⊢    Ⅎ   _  k  C       
						
							2 
								
							 
							gsumsnf.b  ⊢   B  =  Base  G      
						
							3 
								
							 
							gsumsnf.s   ⊢   k  =  M    →   A  =  C         
						
							4 
								
							 
							simp1   ⊢    G  ∈  Mnd    ∧   M  ∈  V    ∧   C  ∈  B     →   G  ∈  Mnd         
						
							5 
								
							 
							simp2   ⊢    G  ∈  Mnd    ∧   M  ∈  V    ∧   C  ∈  B     →   M  ∈  V         
						
							6 
								
							 
							simp3   ⊢    G  ∈  Mnd    ∧   M  ∈  V    ∧   C  ∈  B     →   C  ∈  B         
						
							7 
								3 
							 
							adantl   ⊢     G  ∈  Mnd    ∧   M  ∈  V    ∧   C  ∈  B     ∧   k  =  M     →   A  =  C         
						
							8 
								
							 
							nfv  ⊢   Ⅎ  k   G  ∈  Mnd         
						
							9 
								
							 
							nfv  ⊢   Ⅎ  k   M  ∈  V         
						
							10 
								1 
							 
							nfel1  ⊢   Ⅎ  k   C  ∈  B         
						
							11 
								8  9  10 
							 
							nf3an  ⊢   Ⅎ  k    G  ∈  Mnd    ∧   M  ∈  V    ∧   C  ∈  B          
						
							12 
								2  4  5  6  7  11  1 
							 
							gsumsnfd   ⊢    G  ∈  Mnd    ∧   M  ∈  V    ∧   C  ∈  B     →   ∑  G  k  ∈   M     A =  C