Metamath Proof Explorer


Theorem halfpos

Description: A positive number is greater than its half. (Contributed by NM, 28-Oct-2004) (Proof shortened by Mario Carneiro, 27-May-2016)

Ref Expression
Assertion halfpos A0<AA2<A

Proof

Step Hyp Ref Expression
1 halfpos2 A0<A0<A2
2 rehalfcl AA2
3 2 2 ltaddposd A0<A2A2<A2+A2
4 recn AA
5 2halves AA2+A2=A
6 4 5 syl AA2+A2=A
7 6 breq2d AA2<A2+A2A2<A
8 1 3 7 3bitrd A0<AA2<A