Metamath Proof Explorer


Theorem hbex

Description: If x is not free in ph , then it is not free in E. y ph . (Contributed by NM, 12-Mar-1993) Reduce symbol count in nfex , hbex . (Revised by Wolf Lammen, 16-Oct-2021)

Ref Expression
Hypothesis hbex.1 φ x φ
Assertion hbex y φ x y φ

Proof

Step Hyp Ref Expression
1 hbex.1 φ x φ
2 1 nf5i x φ
3 2 nfex x y φ
4 3 nf5ri y φ x y φ