Metamath Proof Explorer


Theorem hbsb

Description: If z is not free in ph , then it is not free in [ y / x ] ph when y and z are distinct. (Contributed by NM, 12-Aug-1993) Usage of this theorem is discouraged because it depends on ax-13 . Use hbsbw instead. (New usage is discouraged.)

Ref Expression
Hypothesis hbsb.1 φ z φ
Assertion hbsb y x φ z y x φ

Proof

Step Hyp Ref Expression
1 hbsb.1 φ z φ
2 1 nf5i z φ
3 2 nfsb z y x φ
4 3 nf5ri y x φ z y x φ