Metamath Proof Explorer


Theorem hdmapfnN

Description: Functionality of map from vectors to functionals with closed kernels. (Contributed by NM, 30-May-2015) (New usage is discouraged.)

Ref Expression
Hypotheses hdmapfn.h H = LHyp K
hdmapfn.u U = DVecH K W
hdmapfn.v V = Base U
hdmapfn.s S = HDMap K W
hdmapfn.k φ K HL W H
Assertion hdmapfnN φ S Fn V

Proof

Step Hyp Ref Expression
1 hdmapfn.h H = LHyp K
2 hdmapfn.u U = DVecH K W
3 hdmapfn.v V = Base U
4 hdmapfn.s S = HDMap K W
5 hdmapfn.k φ K HL W H
6 riotaex ι y Base LCDual K W | z V ¬ z LSpan U I Base K I LTrn K W LSpan U t y = HDMap1 K W z HDMap1 K W I Base K I LTrn K W HVMap K W I Base K I LTrn K W z t V
7 eqid t V ι y Base LCDual K W | z V ¬ z LSpan U I Base K I LTrn K W LSpan U t y = HDMap1 K W z HDMap1 K W I Base K I LTrn K W HVMap K W I Base K I LTrn K W z t = t V ι y Base LCDual K W | z V ¬ z LSpan U I Base K I LTrn K W LSpan U t y = HDMap1 K W z HDMap1 K W I Base K I LTrn K W HVMap K W I Base K I LTrn K W z t
8 6 7 fnmpti t V ι y Base LCDual K W | z V ¬ z LSpan U I Base K I LTrn K W LSpan U t y = HDMap1 K W z HDMap1 K W I Base K I LTrn K W HVMap K W I Base K I LTrn K W z t Fn V
9 eqid I Base K I LTrn K W = I Base K I LTrn K W
10 eqid LSpan U = LSpan U
11 eqid LCDual K W = LCDual K W
12 eqid Base LCDual K W = Base LCDual K W
13 eqid HVMap K W = HVMap K W
14 eqid HDMap1 K W = HDMap1 K W
15 1 9 2 3 10 11 12 13 14 4 5 hdmapfval φ S = t V ι y Base LCDual K W | z V ¬ z LSpan U I Base K I LTrn K W LSpan U t y = HDMap1 K W z HDMap1 K W I Base K I LTrn K W HVMap K W I Base K I LTrn K W z t
16 15 fneq1d φ S Fn V t V ι y Base LCDual K W | z V ¬ z LSpan U I Base K I LTrn K W LSpan U t y = HDMap1 K W z HDMap1 K W I Base K I LTrn K W HVMap K W I Base K I LTrn K W z t Fn V
17 8 16 mpbiri φ S Fn V