Metamath Proof Explorer


Theorem hisubcomi

Description: Two vector subtractions simultaneously commute in an inner product. (Contributed by NM, 1-Jul-2005) (New usage is discouraged.)

Ref Expression
Hypotheses hisubcom.1 A
hisubcom.2 B
hisubcom.3 C
hisubcom.4 D
Assertion hisubcomi A-BihC-D=B-AihD-C

Proof

Step Hyp Ref Expression
1 hisubcom.1 A
2 hisubcom.2 B
3 hisubcom.3 C
4 hisubcom.4 D
5 2 1 hvnegdii -1B-A=A-B
6 4 3 hvnegdii -1D-C=C-D
7 5 6 oveq12i -1B-Aih-1D-C=A-BihC-D
8 neg1cn 1
9 2 1 hvsubcli B-A
10 4 3 hvsubcli D-C
11 8 8 9 10 his35i -1B-Aih-1D-C=-11B-AihD-C
12 neg1rr 1
13 cjre 11=1
14 12 13 ax-mp 1=1
15 14 oveq2i -11=-1-1
16 ax-1cn 1
17 16 16 mul2negi -1-1=11
18 1t1e1 11=1
19 15 17 18 3eqtri -11=1
20 19 oveq1i -11B-AihD-C=1B-AihD-C
21 9 10 hicli B-AihD-C
22 21 mullidi 1B-AihD-C=B-AihD-C
23 11 20 22 3eqtri -1B-Aih-1D-C=B-AihD-C
24 7 23 eqtr3i A-BihC-D=B-AihD-C