Metamath Proof Explorer


Theorem hladdid

Description: Hilbert space addition with the zero vector. (Contributed by NM, 7-Sep-2007) (New usage is discouraged.)

Ref Expression
Hypotheses hladdid.1 X=BaseSetU
hladdid.2 G=+vU
hladdid.5 Z=0vecU
Assertion hladdid UCHilOLDAXAGZ=A

Proof

Step Hyp Ref Expression
1 hladdid.1 X=BaseSetU
2 hladdid.2 G=+vU
3 hladdid.5 Z=0vecU
4 hlnv UCHilOLDUNrmCVec
5 1 2 3 nv0rid UNrmCVecAXAGZ=A
6 4 5 sylan UCHilOLDAXAGZ=A