Metamath Proof Explorer


Theorem hlhils0

Description: The scalar ring zero for the final constructed Hilbert space. (Contributed by NM, 22-Jun-2015) (Revised by Mario Carneiro, 29-Jun-2015)

Ref Expression
Hypotheses hlhilsbase.h H = LHyp K
hlhilsbase.l L = DVecH K W
hlhilsbase.s S = Scalar L
hlhilsbase.u U = HLHil K W
hlhilsbase.r R = Scalar U
hlhilsbase.k φ K HL W H
hlhils0.z 0 ˙ = 0 S
Assertion hlhils0 φ 0 ˙ = 0 R

Proof

Step Hyp Ref Expression
1 hlhilsbase.h H = LHyp K
2 hlhilsbase.l L = DVecH K W
3 hlhilsbase.s S = Scalar L
4 hlhilsbase.u U = HLHil K W
5 hlhilsbase.r R = Scalar U
6 hlhilsbase.k φ K HL W H
7 hlhils0.z 0 ˙ = 0 S
8 eqidd φ Base S = Base S
9 eqid Base S = Base S
10 1 2 3 4 5 6 9 hlhilsbase2 φ Base S = Base R
11 eqid + S = + S
12 1 2 3 4 5 6 11 hlhilsplus2 φ + S = + R
13 12 oveqdr φ x Base S y Base S x + S y = x + R y
14 8 10 13 grpidpropd φ 0 S = 0 R
15 7 14 syl5eq φ 0 ˙ = 0 R