Metamath Proof Explorer


Theorem hlimuni

Description: A Hilbert space sequence converges to at most one limit. (Contributed by NM, 19-Aug-1999) (Revised by Mario Carneiro, 2-May-2015) (New usage is discouraged.)

Ref Expression
Assertion hlimuni FvAFvBA=B

Proof

Step Hyp Ref Expression
1 hlimf v:domv
2 ffun v:domvFunv
3 funbrfv FunvFvAvF=A
4 1 2 3 mp2b FvAvF=A
5 funbrfv FunvFvBvF=B
6 1 2 5 mp2b FvBvF=B
7 4 6 sylan9req FvAFvBA=B