Metamath Proof Explorer


Theorem hlmul0

Description: Hilbert space scalar multiplication by zero. (Contributed by NM, 7-Sep-2007) (New usage is discouraged.)

Ref Expression
Hypotheses hlmul0.1 X=BaseSetU
hlmul0.4 S=𝑠OLDU
hlmul0.5 Z=0vecU
Assertion hlmul0 UCHilOLDAX0SA=Z

Proof

Step Hyp Ref Expression
1 hlmul0.1 X=BaseSetU
2 hlmul0.4 S=𝑠OLDU
3 hlmul0.5 Z=0vecU
4 hlnv UCHilOLDUNrmCVec
5 1 2 3 nv0 UNrmCVecAX0SA=Z
6 4 5 sylan UCHilOLDAX0SA=Z