Metamath Proof Explorer


Theorem hoaddcom

Description: Commutativity of sum of Hilbert space operators. (Contributed by NM, 24-Aug-2006) (New usage is discouraged.)

Ref Expression
Assertion hoaddcom S:T:S+opT=T+opS

Proof

Step Hyp Ref Expression
1 oveq1 S=ifS:S0hopS+opT=ifS:S0hop+opT
2 oveq2 S=ifS:S0hopT+opS=T+opifS:S0hop
3 1 2 eqeq12d S=ifS:S0hopS+opT=T+opSifS:S0hop+opT=T+opifS:S0hop
4 oveq2 T=ifT:T0hopifS:S0hop+opT=ifS:S0hop+opifT:T0hop
5 oveq1 T=ifT:T0hopT+opifS:S0hop=ifT:T0hop+opifS:S0hop
6 4 5 eqeq12d T=ifT:T0hopifS:S0hop+opT=T+opifS:S0hopifS:S0hop+opifT:T0hop=ifT:T0hop+opifS:S0hop
7 ho0f 0hop:
8 7 elimf ifS:S0hop:
9 7 elimf ifT:T0hop:
10 8 9 hoaddcomi ifS:S0hop+opifT:T0hop=ifT:T0hop+opifS:S0hop
11 3 6 10 dedth2h S:T:S+opT=T+opS