Metamath Proof Explorer


Theorem hocadddiri

Description: Distributive law for Hilbert space operator sum. (Contributed by NM, 26-Nov-2000) (New usage is discouraged.)

Ref Expression
Hypotheses hods.1 R:
hods.2 S:
hods.3 T:
Assertion hocadddiri R+opST=RT+opST

Proof

Step Hyp Ref Expression
1 hods.1 R:
2 hods.2 S:
3 hods.3 T:
4 1 2 hoaddcli R+opS:
5 4 3 hocoi xR+opSTx=R+opSTx
6 1 3 hocofi RT:
7 2 3 hocofi ST:
8 hosval RT:ST:xRT+opSTx=RTx+STx
9 6 7 8 mp3an12 xRT+opSTx=RTx+STx
10 3 ffvelcdmi xTx
11 hosval R:S:TxR+opSTx=RTx+STx
12 1 2 11 mp3an12 TxR+opSTx=RTx+STx
13 10 12 syl xR+opSTx=RTx+STx
14 1 3 hocoi xRTx=RTx
15 2 3 hocoi xSTx=STx
16 14 15 oveq12d xRTx+STx=RTx+STx
17 13 16 eqtr4d xR+opSTx=RTx+STx
18 9 17 eqtr4d xRT+opSTx=R+opSTx
19 5 18 eqtr4d xR+opSTx=RT+opSTx
20 19 rgen xR+opSTx=RT+opSTx
21 4 3 hocofi R+opST:
22 6 7 hoaddcli RT+opST:
23 21 22 hoeqi xR+opSTx=RT+opSTxR+opST=RT+opST
24 20 23 mpbi R+opST=RT+opST