Metamath Proof Explorer


Theorem hodid

Description: Difference of a Hilbert space operator from itself. (Contributed by NM, 23-Jul-2006) (New usage is discouraged.)

Ref Expression
Assertion hodid T:T-opT=0hop

Proof

Step Hyp Ref Expression
1 id T=ifT:T0hopT=ifT:T0hop
2 1 1 oveq12d T=ifT:T0hopT-opT=ifT:T0hop-opifT:T0hop
3 2 eqeq1d T=ifT:T0hopT-opT=0hopifT:T0hop-opifT:T0hop=0hop
4 ho0f 0hop:
5 4 elimf ifT:T0hop:
6 5 hodidi ifT:T0hop-opifT:T0hop=0hop
7 3 6 dedth T:T-opT=0hop