Metamath Proof Explorer


Theorem hoid1ri

Description: Composition of Hilbert space operator with unit identity. (Contributed by NM, 15-Nov-2000) (New usage is discouraged.)

Ref Expression
Hypothesis hoaddrid.1 T:
Assertion hoid1ri IopT=T

Proof

Step Hyp Ref Expression
1 hoaddrid.1 T:
2 df-iop Iop=proj
3 2 coeq1i IopT=projT
4 helch C
5 4 pjfi proj:
6 5 1 hocoi xprojTx=projTx
7 1 ffvelcdmi xTx
8 pjch1 TxprojTx=Tx
9 7 8 syl xprojTx=Tx
10 6 9 eqtrd xprojTx=Tx
11 10 rgen xprojTx=Tx
12 5 1 hocofi projT:
13 12 1 hoeqi xprojTx=TxprojT=T
14 11 13 mpbi projT=T
15 3 14 eqtri IopT=T