Metamath Proof Explorer


Theorem homarw

Description: A hom-set is a subset of the collection of all arrows. (Contributed by Mario Carneiro, 11-Jan-2017)

Ref Expression
Hypotheses arwrcl.a A=ArrowC
arwhoma.h H=HomaC
Assertion homarw XHYA

Proof

Step Hyp Ref Expression
1 arwrcl.a A=ArrowC
2 arwhoma.h H=HomaC
3 ovssunirn XHYranH
4 1 2 arwval A=ranH
5 3 4 sseqtrri XHYA