Metamath Proof Explorer


Theorem homffval

Description: Value of the functionalized Hom-set operation. (Contributed by Mario Carneiro, 4-Jan-2017) (Proof shortened by AV, 1-Mar-2024)

Ref Expression
Hypotheses homffval.f F=Hom𝑓C
homffval.b B=BaseC
homffval.h H=HomC
Assertion homffval F=xB,yBxHy

Proof

Step Hyp Ref Expression
1 homffval.f F=Hom𝑓C
2 homffval.b B=BaseC
3 homffval.h H=HomC
4 fveq2 c=CBasec=BaseC
5 4 2 eqtr4di c=CBasec=B
6 fveq2 c=CHomc=HomC
7 6 3 eqtr4di c=CHomc=H
8 7 oveqd c=CxHomcy=xHy
9 5 5 8 mpoeq123dv c=CxBasec,yBasecxHomcy=xB,yBxHy
10 df-homf Hom𝑓=cVxBasec,yBasecxHomcy
11 2 fvexi BV
12 11 11 mpoex xB,yBxHyV
13 9 10 12 fvmpt CVHom𝑓C=xB,yBxHy
14 fvprc ¬CVHom𝑓C=
15 fvprc ¬CVBaseC=
16 2 15 eqtrid ¬CVB=
17 16 olcd ¬CVB=B=
18 0mpo0 B=B=xB,yBxHy=
19 17 18 syl ¬CVxB,yBxHy=
20 14 19 eqtr4d ¬CVHom𝑓C=xB,yBxHy
21 13 20 pm2.61i Hom𝑓C=xB,yBxHy
22 1 21 eqtri F=xB,yBxHy