Metamath Proof Explorer


Theorem honegdi

Description: Distribution of negative over addition. (Contributed by NM, 24-Aug-2006) (New usage is discouraged.)

Ref Expression
Assertion honegdi T:U:-1·opT+opU=-1·opT+op-1·opU

Proof

Step Hyp Ref Expression
1 neg1cn 1
2 hoadddi 1T:U:-1·opT+opU=-1·opT+op-1·opU
3 1 2 mp3an1 T:U:-1·opT+opU=-1·opT+op-1·opU