Metamath Proof Explorer


Theorem hosd1i

Description: Hilbert space operator sum expressed in terms of difference. (Contributed by NM, 27-Aug-2004) (New usage is discouraged.)

Ref Expression
Hypotheses hosd1.2 T:
hosd1.3 U:
Assertion hosd1i T+opU=T-op0hop-opU

Proof

Step Hyp Ref Expression
1 hosd1.2 T:
2 hosd1.3 U:
3 ho0f 0hop:
4 3 2 hosubcli 0hop-opU:
5 1 2 hoaddcli T+opU:
6 4 5 hoaddcomi 0hop-opU+opT+opU=T+opU+op0hop-opU
7 5 3 2 hoaddsubassi T+opU+op0hop-opU=T+opU+op0hop-opU
8 6 7 eqtr4i 0hop-opU+opT+opU=T+opU+op0hop-opU
9 5 hoaddridi T+opU+op0hop=T+opU
10 9 oveq1i T+opU+op0hop-opU=T+opU-opU
11 1 2 2 hoaddsubi T+opU-opU=T-opU+opU
12 1 2 hosubcli T-opU:
13 12 2 hoaddcomi T-opU+opU=U+opT-opU
14 2 1 hodseqi U+opT-opU=T
15 11 13 14 3eqtri T+opU-opU=T
16 8 10 15 3eqtri 0hop-opU+opT+opU=T
17 1 4 5 hodsi T-op0hop-opU=T+opU0hop-opU+opT+opU=T
18 16 17 mpbir T-op0hop-opU=T+opU
19 18 eqcomi T+opU=T-op0hop-opU