Metamath Proof Explorer


Theorem hsmexlem8

Description: Lemma for hsmex . Properties of the recurrent sequence of ordinals. (Contributed by Stefan O'Rear, 14-Feb-2015)

Ref Expression
Hypothesis hsmexlem7.h H=reczVhar𝒫X×zhar𝒫Xω
Assertion hsmexlem8 aωHsuca=har𝒫X×Ha

Proof

Step Hyp Ref Expression
1 hsmexlem7.h H=reczVhar𝒫X×zhar𝒫Xω
2 fvex har𝒫X×HaV
3 xpeq2 b=zX×b=X×z
4 3 pweqd b=z𝒫X×b=𝒫X×z
5 4 fveq2d b=zhar𝒫X×b=har𝒫X×z
6 xpeq2 b=HaX×b=X×Ha
7 6 pweqd b=Ha𝒫X×b=𝒫X×Ha
8 7 fveq2d b=Hahar𝒫X×b=har𝒫X×Ha
9 1 5 8 frsucmpt2 aωhar𝒫X×HaVHsuca=har𝒫X×Ha
10 2 9 mpan2 aωHsuca=har𝒫X×Ha