Step |
Hyp |
Ref |
Expression |
1 |
|
hsmexlem7.h |
⊢ 𝐻 = ( rec ( ( 𝑧 ∈ V ↦ ( har ‘ 𝒫 ( 𝑋 × 𝑧 ) ) ) , ( har ‘ 𝒫 𝑋 ) ) ↾ ω ) |
2 |
|
fvex |
⊢ ( har ‘ 𝒫 ( 𝑋 × ( 𝐻 ‘ 𝑎 ) ) ) ∈ V |
3 |
|
xpeq2 |
⊢ ( 𝑏 = 𝑧 → ( 𝑋 × 𝑏 ) = ( 𝑋 × 𝑧 ) ) |
4 |
3
|
pweqd |
⊢ ( 𝑏 = 𝑧 → 𝒫 ( 𝑋 × 𝑏 ) = 𝒫 ( 𝑋 × 𝑧 ) ) |
5 |
4
|
fveq2d |
⊢ ( 𝑏 = 𝑧 → ( har ‘ 𝒫 ( 𝑋 × 𝑏 ) ) = ( har ‘ 𝒫 ( 𝑋 × 𝑧 ) ) ) |
6 |
|
xpeq2 |
⊢ ( 𝑏 = ( 𝐻 ‘ 𝑎 ) → ( 𝑋 × 𝑏 ) = ( 𝑋 × ( 𝐻 ‘ 𝑎 ) ) ) |
7 |
6
|
pweqd |
⊢ ( 𝑏 = ( 𝐻 ‘ 𝑎 ) → 𝒫 ( 𝑋 × 𝑏 ) = 𝒫 ( 𝑋 × ( 𝐻 ‘ 𝑎 ) ) ) |
8 |
7
|
fveq2d |
⊢ ( 𝑏 = ( 𝐻 ‘ 𝑎 ) → ( har ‘ 𝒫 ( 𝑋 × 𝑏 ) ) = ( har ‘ 𝒫 ( 𝑋 × ( 𝐻 ‘ 𝑎 ) ) ) ) |
9 |
1 5 8
|
frsucmpt2 |
⊢ ( ( 𝑎 ∈ ω ∧ ( har ‘ 𝒫 ( 𝑋 × ( 𝐻 ‘ 𝑎 ) ) ) ∈ V ) → ( 𝐻 ‘ suc 𝑎 ) = ( har ‘ 𝒫 ( 𝑋 × ( 𝐻 ‘ 𝑎 ) ) ) ) |
10 |
2 9
|
mpan2 |
⊢ ( 𝑎 ∈ ω → ( 𝐻 ‘ suc 𝑎 ) = ( har ‘ 𝒫 ( 𝑋 × ( 𝐻 ‘ 𝑎 ) ) ) ) |