Metamath Proof Explorer


Theorem hsmexlem8

Description: Lemma for hsmex . Properties of the recurrent sequence of ordinals. (Contributed by Stefan O'Rear, 14-Feb-2015)

Ref Expression
Hypothesis hsmexlem7.h 𝐻 = ( rec ( ( 𝑧 ∈ V ↦ ( har ‘ 𝒫 ( 𝑋 × 𝑧 ) ) ) , ( har ‘ 𝒫 𝑋 ) ) ↾ ω )
Assertion hsmexlem8 ( 𝑎 ∈ ω → ( 𝐻 ‘ suc 𝑎 ) = ( har ‘ 𝒫 ( 𝑋 × ( 𝐻𝑎 ) ) ) )

Proof

Step Hyp Ref Expression
1 hsmexlem7.h 𝐻 = ( rec ( ( 𝑧 ∈ V ↦ ( har ‘ 𝒫 ( 𝑋 × 𝑧 ) ) ) , ( har ‘ 𝒫 𝑋 ) ) ↾ ω )
2 fvex ( har ‘ 𝒫 ( 𝑋 × ( 𝐻𝑎 ) ) ) ∈ V
3 xpeq2 ( 𝑏 = 𝑧 → ( 𝑋 × 𝑏 ) = ( 𝑋 × 𝑧 ) )
4 3 pweqd ( 𝑏 = 𝑧 → 𝒫 ( 𝑋 × 𝑏 ) = 𝒫 ( 𝑋 × 𝑧 ) )
5 4 fveq2d ( 𝑏 = 𝑧 → ( har ‘ 𝒫 ( 𝑋 × 𝑏 ) ) = ( har ‘ 𝒫 ( 𝑋 × 𝑧 ) ) )
6 xpeq2 ( 𝑏 = ( 𝐻𝑎 ) → ( 𝑋 × 𝑏 ) = ( 𝑋 × ( 𝐻𝑎 ) ) )
7 6 pweqd ( 𝑏 = ( 𝐻𝑎 ) → 𝒫 ( 𝑋 × 𝑏 ) = 𝒫 ( 𝑋 × ( 𝐻𝑎 ) ) )
8 7 fveq2d ( 𝑏 = ( 𝐻𝑎 ) → ( har ‘ 𝒫 ( 𝑋 × 𝑏 ) ) = ( har ‘ 𝒫 ( 𝑋 × ( 𝐻𝑎 ) ) ) )
9 1 5 8 frsucmpt2 ( ( 𝑎 ∈ ω ∧ ( har ‘ 𝒫 ( 𝑋 × ( 𝐻𝑎 ) ) ) ∈ V ) → ( 𝐻 ‘ suc 𝑎 ) = ( har ‘ 𝒫 ( 𝑋 × ( 𝐻𝑎 ) ) ) )
10 2 9 mpan2 ( 𝑎 ∈ ω → ( 𝐻 ‘ suc 𝑎 ) = ( har ‘ 𝒫 ( 𝑋 × ( 𝐻𝑎 ) ) ) )