Metamath Proof Explorer


Theorem hvaddcan

Description: Cancellation law for vector addition. (Contributed by NM, 18-May-2005) (New usage is discouraged.)

Ref Expression
Assertion hvaddcan ABCA+B=A+CB=C

Proof

Step Hyp Ref Expression
1 oveq1 A=ifAA0A+B=ifAA0+B
2 oveq1 A=ifAA0A+C=ifAA0+C
3 1 2 eqeq12d A=ifAA0A+B=A+CifAA0+B=ifAA0+C
4 3 bibi1d A=ifAA0A+B=A+CB=CifAA0+B=ifAA0+CB=C
5 oveq2 B=ifBB0ifAA0+B=ifAA0+ifBB0
6 5 eqeq1d B=ifBB0ifAA0+B=ifAA0+CifAA0+ifBB0=ifAA0+C
7 eqeq1 B=ifBB0B=CifBB0=C
8 6 7 bibi12d B=ifBB0ifAA0+B=ifAA0+CB=CifAA0+ifBB0=ifAA0+CifBB0=C
9 oveq2 C=ifCC0ifAA0+C=ifAA0+ifCC0
10 9 eqeq2d C=ifCC0ifAA0+ifBB0=ifAA0+CifAA0+ifBB0=ifAA0+ifCC0
11 eqeq2 C=ifCC0ifBB0=CifBB0=ifCC0
12 10 11 bibi12d C=ifCC0ifAA0+ifBB0=ifAA0+CifBB0=CifAA0+ifBB0=ifAA0+ifCC0ifBB0=ifCC0
13 ifhvhv0 ifAA0
14 ifhvhv0 ifBB0
15 ifhvhv0 ifCC0
16 13 14 15 hvaddcani ifAA0+ifBB0=ifAA0+ifCC0ifBB0=ifCC0
17 4 8 12 16 dedth3h ABCA+B=A+CB=C