Metamath Proof Explorer


Theorem hvdistr1i

Description: Scalar multiplication distributive law. (Contributed by NM, 3-Sep-1999) (New usage is discouraged.)

Ref Expression
Hypotheses hvdistr1.1 A
hvdistr1.2 B
hvdistr1.3 C
Assertion hvdistr1i AB+C=AB+AC

Proof

Step Hyp Ref Expression
1 hvdistr1.1 A
2 hvdistr1.2 B
3 hvdistr1.3 C
4 ax-hvdistr1 ABCAB+C=AB+AC
5 1 2 3 4 mp3an AB+C=AB+AC