Metamath Proof Explorer


Theorem hvnegdi

Description: Distribution of negative over subtraction. (Contributed by NM, 2-Apr-2000) (New usage is discouraged.)

Ref Expression
Assertion hvnegdi AB-1A-B=B-A

Proof

Step Hyp Ref Expression
1 oveq1 A=ifAA0A-B=ifAA0-B
2 1 oveq2d A=ifAA0-1A-B=-1ifAA0-B
3 oveq2 A=ifAA0B-A=B-ifAA0
4 2 3 eqeq12d A=ifAA0-1A-B=B-A-1ifAA0-B=B-ifAA0
5 oveq2 B=ifBB0ifAA0-B=ifAA0-ifBB0
6 5 oveq2d B=ifBB0-1ifAA0-B=-1ifAA0-ifBB0
7 oveq1 B=ifBB0B-ifAA0=ifBB0-ifAA0
8 6 7 eqeq12d B=ifBB0-1ifAA0-B=B-ifAA0-1ifAA0-ifBB0=ifBB0-ifAA0
9 ifhvhv0 ifAA0
10 ifhvhv0 ifBB0
11 9 10 hvnegdii -1ifAA0-ifBB0=ifBB0-ifAA0
12 4 8 11 dedth2h AB-1A-B=B-A