Metamath Proof Explorer


Theorem hvsubeq0

Description: If the difference between two vectors is zero, they are equal. (Contributed by NM, 23-Oct-1999) (New usage is discouraged.)

Ref Expression
Assertion hvsubeq0 ABA-B=0A=B

Proof

Step Hyp Ref Expression
1 oveq1 A=ifAA0A-B=ifAA0-B
2 1 eqeq1d A=ifAA0A-B=0ifAA0-B=0
3 eqeq1 A=ifAA0A=BifAA0=B
4 2 3 bibi12d A=ifAA0A-B=0A=BifAA0-B=0ifAA0=B
5 oveq2 B=ifBB0ifAA0-B=ifAA0-ifBB0
6 5 eqeq1d B=ifBB0ifAA0-B=0ifAA0-ifBB0=0
7 eqeq2 B=ifBB0ifAA0=BifAA0=ifBB0
8 6 7 bibi12d B=ifBB0ifAA0-B=0ifAA0=BifAA0-ifBB0=0ifAA0=ifBB0
9 ifhvhv0 ifAA0
10 ifhvhv0 ifBB0
11 9 10 hvsubeq0i ifAA0-ifBB0=0ifAA0=ifBB0
12 4 8 11 dedth2h ABA-B=0A=B