Metamath Proof Explorer


Theorem hvsubf

Description: Mapping domain and codomain of vector subtraction. (Contributed by NM, 6-Sep-2007) (New usage is discouraged.)

Ref Expression
Assertion hvsubf -:×

Proof

Step Hyp Ref Expression
1 neg1cn 1
2 hvmulcl 1y-1y
3 1 2 mpan y-1y
4 hvaddcl x-1yx+-1y
5 3 4 sylan2 xyx+-1y
6 5 rgen2 xyx+-1y
7 df-hvsub -=x,yx+-1y
8 7 fmpo xyx+-1y-:×
9 6 8 mpbi -:×