Metamath Proof Explorer


Theorem i1f0rn

Description: Any simple function takes the value zero on a set of unbounded measure, so in particular this set is not empty. (Contributed by Mario Carneiro, 18-Jun-2014)

Ref Expression
Assertion i1f0rn F dom 1 0 ran F

Proof

Step Hyp Ref Expression
1 pnfnre +∞
2 1 neli ¬ +∞
3 rembl dom vol
4 mblvol dom vol vol = vol *
5 3 4 ax-mp vol = vol *
6 ovolre vol * = +∞
7 5 6 eqtri vol = +∞
8 cnvimarndm F -1 ran F = dom F
9 i1ff F dom 1 F :
10 9 fdmd F dom 1 dom F =
11 10 adantr F dom 1 ¬ 0 ran F dom F =
12 8 11 eqtrid F dom 1 ¬ 0 ran F F -1 ran F =
13 12 fveq2d F dom 1 ¬ 0 ran F vol F -1 ran F = vol
14 i1fima2 F dom 1 ¬ 0 ran F vol F -1 ran F
15 13 14 eqeltrrd F dom 1 ¬ 0 ran F vol
16 7 15 eqeltrrid F dom 1 ¬ 0 ran F +∞
17 16 ex F dom 1 ¬ 0 ran F +∞
18 2 17 mt3i F dom 1 0 ran F