Metamath Proof Explorer


Theorem iccin

Description: Intersection of two closed intervals of extended reals. (Contributed by Zhi Wang, 9-Sep-2024)

Ref Expression
Assertion iccin A * B * C * D * A B C D = if A C C A if B D B D

Proof

Step Hyp Ref Expression
1 df-icc . = x * , y * z * | x z z y
2 xrmaxle A * C * z * if A C C A z A z C z
3 xrlemin z * B * D * z if B D B D z B z D
4 1 2 3 ixxin A * B * C * D * A B C D = if A C C A if B D B D