Metamath Proof Explorer


Theorem xrlemin

Description: Two ways of saying a number is less than or equal to the minimum of two others. (Contributed by Mario Carneiro, 18-Jun-2014)

Ref Expression
Assertion xrlemin A*B*C*AifBCBCABAC

Proof

Step Hyp Ref Expression
1 xrmin1 B*C*ifBCBCB
2 1 3adant1 A*B*C*ifBCBCB
3 simp1 A*B*C*A*
4 ifcl B*C*ifBCBC*
5 4 3adant1 A*B*C*ifBCBC*
6 simp2 A*B*C*B*
7 xrletr A*ifBCBC*B*AifBCBCifBCBCBAB
8 3 5 6 7 syl3anc A*B*C*AifBCBCifBCBCBAB
9 2 8 mpan2d A*B*C*AifBCBCAB
10 xrmin2 B*C*ifBCBCC
11 10 3adant1 A*B*C*ifBCBCC
12 xrletr A*ifBCBC*C*AifBCBCifBCBCCAC
13 5 12 syld3an2 A*B*C*AifBCBCifBCBCCAC
14 11 13 mpan2d A*B*C*AifBCBCAC
15 9 14 jcad A*B*C*AifBCBCABAC
16 breq2 B=ifBCBCABAifBCBC
17 breq2 C=ifBCBCACAifBCBC
18 16 17 ifboth ABACAifBCBC
19 15 18 impbid1 A*B*C*AifBCBCABAC