Metamath Proof Explorer


Theorem iccdisj2

Description: If the upper bound of one closed interval is less than the lower bound of the other, the intervals are disjoint. (Contributed by Zhi Wang, 9-Sep-2024)

Ref Expression
Assertion iccdisj2 A*D*B<CABCD=

Proof

Step Hyp Ref Expression
1 simp1 A*D*B<CA*
2 simp3 A*D*B<CB<C
3 ltrelxr <*×*
4 3 brel B<CB*C*
5 2 4 syl A*D*B<CB*C*
6 5 simprd A*D*B<CC*
7 1 xrleidd A*D*B<CAA
8 iccssico A*C*AAB<CABAC
9 1 6 7 2 8 syl22anc A*D*B<CABAC
10 simp2 A*D*B<CD*
11 df-ico .=x*,y*z*|xzz<y
12 df-icc .=x*,y*z*|xzzy
13 xrlenlt C*w*Cw¬w<C
14 11 12 13 ixxdisj A*C*D*ACCD=
15 1 6 10 14 syl3anc A*D*B<CACCD=
16 9 15 ssdisjd A*D*B<CABCD=