Metamath Proof Explorer


Theorem idadm

Description: Domain of the identity arrow. (Contributed by Mario Carneiro, 11-Jan-2017)

Ref Expression
Hypotheses idafval.i I=IdaC
idafval.b B=BaseC
idafval.c φCCat
idahom.x φXB
Assertion idadm φdomaIX=X

Proof

Step Hyp Ref Expression
1 idafval.i I=IdaC
2 idafval.b B=BaseC
3 idafval.c φCCat
4 idahom.x φXB
5 eqid HomaC=HomaC
6 1 2 3 4 5 idahom φIXXHomaCX
7 5 homadm IXXHomaCXdomaIX=X
8 6 7 syl φdomaIX=X