Metamath Proof Explorer


Theorem idresssidinxp

Description: Condition for the identity restriction to be a subclass of identity intersection with a Cartesian product. (Contributed by Peter Mazsa, 19-Jul-2018)

Ref Expression
Assertion idresssidinxp ABIAIA×B

Proof

Step Hyp Ref Expression
1 resss IAI
2 1 a1i ABIAI
3 idssxp IAA×A
4 xpss2 ABA×AA×B
5 3 4 sstrid ABIAA×B
6 2 5 ssind ABIAIA×B