Metamath Proof Explorer


Theorem ielefmnd

Description: The identity function restricted to a set A is an element of the base set of the monoid of endofunctions on A . (Contributed by AV, 27-Jan-2024)

Ref Expression
Hypothesis ielefmnd.g No typesetting found for |- G = ( EndoFMnd ` A ) with typecode |-
Assertion ielefmnd AVIABaseG

Proof

Step Hyp Ref Expression
1 ielefmnd.g Could not format G = ( EndoFMnd ` A ) : No typesetting found for |- G = ( EndoFMnd ` A ) with typecode |-
2 f1oi IA:A1-1 ontoA
3 f1of IA:A1-1 ontoAIA:AA
4 2 3 ax-mp IA:AA
5 eqid BaseG=BaseG
6 1 5 elefmndbas AVIABaseGIA:AA
7 4 6 mpbiri AVIABaseG