Metamath Proof Explorer


Theorem ifan

Description: Rewrite a conjunction in a conditional as two nested conditionals. (Contributed by Mario Carneiro, 28-Jul-2014)

Ref Expression
Assertion ifan ifφψAB=ifφifψABB

Proof

Step Hyp Ref Expression
1 iftrue φifφifψABB=ifψAB
2 ibar φψφψ
3 2 ifbid φifψAB=ifφψAB
4 1 3 eqtr2d φifφψAB=ifφifψABB
5 simpl φψφ
6 5 con3i ¬φ¬φψ
7 6 iffalsed ¬φifφψAB=B
8 iffalse ¬φifφifψABB=B
9 7 8 eqtr4d ¬φifφψAB=ifφifψABB
10 4 9 pm2.61i ifφψAB=ifφifψABB