Metamath Proof Explorer


Theorem ifel

Description: Membership of a conditional operator. (Contributed by NM, 10-Sep-2005)

Ref Expression
Assertion ifel ifφABCφAC¬φBC

Proof

Step Hyp Ref Expression
1 eleq1 ifφAB=AifφABCAC
2 eleq1 ifφAB=BifφABCBC
3 1 2 elimif ifφABCφAC¬φBC