Metamath Proof Explorer


Theorem elimif

Description: Elimination of a conditional operator contained in a wff ps . (Contributed by NM, 15-Feb-2005) (Proof shortened by NM, 25-Apr-2019)

Ref Expression
Hypotheses elimif.1 ifφAB=Aψχ
elimif.2 ifφAB=Bψθ
Assertion elimif ψφχ¬φθ

Proof

Step Hyp Ref Expression
1 elimif.1 ifφAB=Aψχ
2 elimif.2 ifφAB=Bψθ
3 iftrue φifφAB=A
4 3 1 syl φψχ
5 iffalse ¬φifφAB=B
6 5 2 syl ¬φψθ
7 4 6 cases ψφχ¬φθ