Metamath Proof Explorer


Theorem ifeq12d

Description: Equality deduction for conditional operator. (Contributed by NM, 24-Mar-2015)

Ref Expression
Hypotheses ifeq1d.1 φA=B
ifeq12d.2 φC=D
Assertion ifeq12d φifψAC=ifψBD

Proof

Step Hyp Ref Expression
1 ifeq1d.1 φA=B
2 ifeq12d.2 φC=D
3 1 ifeq1d φifψAC=ifψBC
4 2 ifeq2d φifψBC=ifψBD
5 3 4 eqtrd φifψAC=ifψBD