Metamath Proof Explorer


Theorem ifnot

Description: Negating the first argument swaps the last two arguments of a conditional operator. (Contributed by NM, 21-Jun-2007)

Ref Expression
Assertion ifnot if¬φAB=ifφBA

Proof

Step Hyp Ref Expression
1 notnot φ¬¬φ
2 1 iffalsed φif¬φAB=B
3 iftrue φifφBA=B
4 2 3 eqtr4d φif¬φAB=ifφBA
5 iftrue ¬φif¬φAB=A
6 iffalse ¬φifφBA=A
7 5 6 eqtr4d ¬φif¬φAB=ifφBA
8 4 7 pm2.61i if¬φAB=ifφBA