Database
SUPPLEMENTARY MATERIAL (USERS' MATHBOXES)
Mathbox for Richard Penner
Short Studies
Additional work on conditional logical operator
ifpbi23
Next ⟩
ifpbiidcor
Metamath Proof Explorer
Ascii
Unicode
Theorem
ifpbi23
Description:
Equivalence theorem for conditional logical operators.
(Contributed by
RP
, 15-Apr-2020)
Ref
Expression
Assertion
ifpbi23
⊢
φ
↔
ψ
∧
χ
↔
θ
→
if-
τ
φ
χ
↔
if-
τ
ψ
θ
Proof
Step
Hyp
Ref
Expression
1
simpl
⊢
φ
↔
ψ
∧
χ
↔
θ
→
φ
↔
ψ
2
simpr
⊢
φ
↔
ψ
∧
χ
↔
θ
→
χ
↔
θ
3
1
2
ifpbi23d
⊢
φ
↔
ψ
∧
χ
↔
θ
→
if-
τ
φ
χ
↔
if-
τ
ψ
θ