Metamath Proof Explorer


Theorem ifpbicor

Description: Corollary of commutation of biconditional. (Contributed by RP, 25-Apr-2020)

Ref Expression
Assertion ifpbicor if- φ ψ ¬ ψ if- ψ φ ¬ φ

Proof

Step Hyp Ref Expression
1 bicom φ ψ ψ φ
2 ifpdfbi φ ψ if- φ ψ ¬ ψ
3 ifpdfbi ψ φ if- ψ φ ¬ φ
4 1 2 3 3bitr3i if- φ ψ ¬ ψ if- ψ φ ¬ φ