Metamath Proof Explorer


Theorem ifpdfan

Description: Define and with conditional logic operator and false. (Contributed by RP, 20-Apr-2020)

Ref Expression
Assertion ifpdfan φψif-φψ

Proof

Step Hyp Ref Expression
1 fal ¬
2 1 intnan ¬¬φ
3 2 biorfi φψφψ¬φ
4 df-ifp if-φψφψ¬φ
5 3 4 bitr4i φψif-φψ