Metamath Proof Explorer


Theorem ifpdfor

Description: Define or in terms of conditional logic operator and true. (Contributed by RP, 20-Apr-2020)

Ref Expression
Assertion ifpdfor φψif-φψ

Proof

Step Hyp Ref Expression
1 tru
2 1 olci ¬φ
3 2 biantrur φψ¬φφψ
4 dfifp4 if-φψ¬φφψ
5 3 4 bitr4i φψif-φψ