Metamath Proof Explorer


Theorem ifpid2

Description: Restate wff as conditional logic operator. (Contributed by RP, 20-Apr-2020)

Ref Expression
Assertion ifpid2 φ if- φ

Proof

Step Hyp Ref Expression
1 tru
2 1 olci ¬ φ
3 2 biantrur φ ¬ φ φ
4 fal ¬
5 4 biorfi φ φ
6 dfifp4 if- φ ¬ φ φ
7 3 5 6 3bitr4i φ if- φ