Metamath Proof Explorer


Theorem ifpim1

Description: Restate implication as conditional logic operator. (Contributed by RP, 20-Apr-2020)

Ref Expression
Assertion ifpim1 φψif-¬φψ

Proof

Step Hyp Ref Expression
1 tru
2 1 olci ¬¬φ
3 2 biantrur ¬φψ¬¬φ¬φψ
4 imor φψ¬φψ
5 dfifp4 if-¬φψ¬¬φ¬φψ
6 3 4 5 3bitr4i φψif-¬φψ