Metamath Proof Explorer


Theorem ifpnorcor

Description: Corollary of commutation of nor. (Contributed by RP, 25-Apr-2020)

Ref Expression
Assertion ifpnorcor if-φ¬φ¬ψif-ψ¬ψ¬φ

Proof

Step Hyp Ref Expression
1 ifporcor if-φφψif-ψψφ
2 1 notbii ¬if-φφψ¬if-ψψφ
3 ifpnot23 ¬if-φφψif-φ¬φ¬ψ
4 ifpnot23 ¬if-ψψφif-ψ¬ψ¬φ
5 2 3 4 3bitr3i if-φ¬φ¬ψif-ψ¬ψ¬φ