Metamath Proof Explorer


Theorem ige2m2fzo

Description: Membership of an integer greater than 1 decreased by 2 in a half-open range of nonnegative integers. (Contributed by Alexander van der Vekens, 3-Oct-2018)

Ref Expression
Assertion ige2m2fzo N2N20..^N1

Proof

Step Hyp Ref Expression
1 eluzel2 N22
2 1z 1
3 1 2 jctir N221
4 1lt2 1<2
5 4 jctr N2N21<2
6 eluzgtdifelfzo 21N21<2N20..^N1
7 3 5 6 sylc N2N20..^N1