Metamath Proof Explorer


Theorem imaeq1

Description: Equality theorem for image. (Contributed by NM, 14-Aug-1994)

Ref Expression
Assertion imaeq1 A=BAC=BC

Proof

Step Hyp Ref Expression
1 reseq1 A=BAC=BC
2 1 rneqd A=BranAC=ranBC
3 df-ima AC=ranAC
4 df-ima BC=ranBC
5 2 3 4 3eqtr4g A=BAC=BC