Metamath Proof Explorer


Theorem imaeq2

Description: Equality theorem for image. (Contributed by NM, 14-Aug-1994)

Ref Expression
Assertion imaeq2 A=BCA=CB

Proof

Step Hyp Ref Expression
1 reseq2 A=BCA=CB
2 1 rneqd A=BranCA=ranCB
3 df-ima CA=ranCA
4 df-ima CB=ranCB
5 2 3 4 3eqtr4g A=BCA=CB