Metamath Proof Explorer


Theorem imaeqsalvOLD

Description: Duplicate version of ralima . (Contributed by Scott Fenton, 27-Sep-2024) (Proof modification is discouraged.) (New usage is discouraged.)

Ref Expression
Hypothesis imaeqsexvOLD.1 x = F y φ ψ
Assertion imaeqsalvOLD F Fn A B A x F B φ y B ψ

Proof

Step Hyp Ref Expression
1 imaeqsexvOLD.1 x = F y φ ψ
2 1 notbid x = F y ¬ φ ¬ ψ
3 2 imaeqsexvOLD F Fn A B A x F B ¬ φ y B ¬ ψ
4 3 notbid F Fn A B A ¬ x F B ¬ φ ¬ y B ¬ ψ
5 dfral2 x F B φ ¬ x F B ¬ φ
6 dfral2 y B ψ ¬ y B ¬ ψ
7 4 5 6 3bitr4g F Fn A B A x F B φ y B ψ